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In this Review the potential role of glutamatergic and serotonergic neurotransmitter 

systems in the pathophysiology of schizophrenia is examined from the perspective of the 

psychotomimetic effects of 1) phencyclidine (PCP) and ketamine, non-competitive 

antagonists of the N-methyl-D-aspartate (NMDA) glutamatergic receptor that bind at the 

intra-channel site of the receptor to prevent calcium ion flux into the cell 2) D-lysergic 

acid diethylamide (LSD), a serotonin-like hallucinogenic indoleamine that acts as an 

agonist at the serotonin-subtype-2A (5HT2A) receptor, and 3) 3,4-methylenedioxy-

methamphetamine (MDMA), an indirect serotonin agonist. These drugs, variously called 

hallucinogens, schizophrenomimetics, psychotogens or psychotomimetics, have in 

common reports that they can induce psychotic symptoms (hallucinations, delusions, 

formal thought disorder, or catatonia-like abnormalities) in the absence of delirium. The 

primary question addressed herein, whether PCP-induced psychosis is a valid model of 

schizophrenia, gives rise to additional questions about the validity of ketamine challenge 

at subanaesthetic doses in humans as a model of PCP psychosis, and in turn, questions 

about the validity of drug-induced changes in non-human animals (rodents, monkeys) 

treated with PCP and its analogues (ketamine or dizocilpine [MK-801]) as models of 

PCP-induced psychosis.  

 

A model is defined as any experimental preparation developed for the purpose of 

studying a condition in the same or different species (1). In evaluating disease models the 

following criteria (2) apply:  

• How similar phenomenologically is the behavioural performance of the model 

compared to the symptoms of the disease? (face validity) 
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• How closely does the model replicate the hypothesised pathophysiology or 

theoretical process underlying the disease? (construct validity)  

• How accurately can predictions be made about the disease based on performance 

of the model? (predictive validity).  

An extension of construct validity is aetiological validity, which refers to the degree of 

equivalence between the model-inducing manipulation and the aetiological factors 

causing the disease. Models must be reliable, in the sense that their performance can be 

accurately measured. Ideally, models also display discriminant validity (measures of the 

model’s performance are un-correlated with those of models of other diseases) and 

convergent validity (multiple measures of the performance of the same model are highly 

correlated). Hence, the validity of a model relies as much on aetiological validity (how 

the model is induced or created) as on the validity of measures of its performance, which 

in turn depend on the validity of measures of the disease itself. 

 

Modelling schizophrenia is difficult at all levels (2, 3). There are no agreed upon 

pathognomonic features; many of the symptoms are based on verbal report and cannot be 

measured in animals; the aetiology is multi-factorial and specific factors are unknown; 

the pathophysiology is ill-defined and may be heterogenous; and most disease measures 

applicable to in vivo animal models, e.g. deficits in working memory or prepulse 

inhibition (PPI), are not specific to schizophrenia. Rapid progress in therapeutics in other 

complex diseases (e.g. cancer) has been attributed to availability of valid animal and 

cellular models, and slow progress in schizophrenia attributed to the lack of these models 

(4). Some argue that drug development in schizophrenia has not progressed appreciably 

since the introduction of chlorpromazine (4-7). Others reason that only symptom 

reducing, and not disease modifying, treatments will arise when disease models for 

testing new drugs are based solely on symptom similarity and its behavioural 

measurement, as is the case with amphetamine-induced hyperlocomotion in rodents (e.g. 

8, 9). These considerations imply that a useful disease model of schizophrenia will have 

more than face and construct validity by generating accurate predictions about the human 

pathophysiology and likely clinical effectiveness of novel pharmacotherapies. This 
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Review aims to assess the relative validity of NMDA antagonist models of schizophrenia 

compared with serotonergic models based on LSD- and MDMA-induced psychosis. 

Human studies 
For each drug of interest, this Section reviews the evidence for psychotomimetic effects 

in humans, in terms of induced transient symptoms with acute dosing, and the 

epidemiological association between formal psychotic disorder and chronic abuse. The 

phenomenological similarity of drug-induced symptoms and the clinical features of 

schizophrenia is closely examined. Where available, human neuroimaging and clinical 

biomarker studies are considered for comparison of drug-induced effects and deficits 

seen in schizophrenia. Ketamine is included in the review because most experimental 

evidence supporting the validity of the PCP model arose from studies using ketamine in 

humans. The literature on LSD and MDMA is briefly reviewed for comparative purposes.  

Phencyclidine (PCP) 

Phencyclidine [1-(1-phenylcyclohexyl)piperidine hydrochloride] was synthesized in 1956 

(10). Preclinical testing indicated that PCP might be a safe intravenous (IV) anaesthetic 

because it induced analgesia and anaesthesia without circulatory or respiratory depression 

(10). PCP was tested as an anaesthetic in about 3000 patients in the late 1950’s. The term 

‘dissociative anaesthetic’ was coined because PCP induced a state of detachment, and 

dissociation from painful and environmental stimuli, without causing unconsciousness: 

during anaesthesia the patient remained immobile with fixed sightless staring, absent 

facial expression, and open mouth (11). PCP is highly lipid soluble and readily crosses 

the blood-brain barrier, inducing CNS effects within minutes of IV injection. The serum 

half-life of PCP was reported to vary between 4 to 72 hours (12, 13). When PCP was 

used as an IV anaesthetic, patients became responsive to auditory stimuli within 60 

minutes (14) though orientation remained poor for up to 4 hours (15). Intravenous PCP 

induced dose-dependent effects: at doses of about 0.25 mg/kg (about 0.2 μM serum 

concentration), it produced complete insensibility to pain; at doses above 0.5 mg/kg 

(about 0.4 μM serum concentration), patients became delirious; and when doses were 
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increased towards 1 mg/kg (up to 0.8 μM serum concentration), severe rigidity, catatonia, 

and convulsions ensued (14, 16-18). 

 

Early clinical use revealed that many patients experienced psychotic symptoms as they 

emerged from PCP anaesthesia (11, 14, 15, 19). Emergence phenomena included: 

agitation, bizarre behaviour, paranoia, formal thought disorder, hallucinations, and 

delusions, typically lasting for 12-72 hours but occasionally persisting for up to 10 days 

(14, 19). Symptoms were schizophrenia-like, especially the motor changes (15). Flat 

facies, fixed staring, manneristic grimacing, generalized rigidity, and plastic stiffness 

very similar to ‘cerea flexibilitas’ occurred. Stereotypic verbalizations of select phrases 

were uttered. PCP-induced agitation was associated with atypical movements: head 

rolling or shaking the head from side to side was common. Attempts to prevent 

emergence reactions by pre-treatment with haloperidol or diazepam were relatively 

unsuccessful: diazepam (20) appeared to be as effective as haloperidol (21). 

Phencyclidine was withdrawn from the market for human use in 1965. A veterinarian 

formulation was introduced in 1967 but because of a growing abuse problem all legal 

manufacture of the drug was ceased in 1979.  

 

Despite its propensity to cause adverse reactions, PCP abuse became widespread. It was 

relatively inexpensive to manufacture and the starting materials, used in many industrial 

processes, were readily available (22). Illicit PCP use first appeared in 1965 on the West 

Coast of the USA (13). Initially the drug was ingested orally (called the ‘PeaCe Pill’). 

Slow oral absorption resulted in inadvertent high dosing and frequent adverse reactions, 

limiting its appeal (22). Once street users discovered that the dose could be lowered and 

self-titrated by smoking PCP added to cigarettes, illicit use escalated. National surveys in 

the USA indicate that peak use of PCP occurred between 1977 and 1979 (23, 24). 

Between 1976 and 1977 the National Institute of Drug Abuse (NIDA) reported a 

doubling (from 3% to 5.8%) of the number of 12- to 17-year-old users of PCP, and a 50% 

increase (from 9.5% to 13.9%) in 18- to 25-year-old users (22). A survey of 319 adult 

users reported negative events on 100% of use occasions (25), including speech 

difficulties (80%), perceptual disturbances (75%), restlessness (76%), disorientation 
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(63%), anxiety (61%), paranoia (34%), hyper-excitability (27%), irritability (22%) and 

mental confusion (22%). The extent to which PCP posed serious problems at that time 

was indicated by the US Drug Abuse Warning Network (DAWN), a national reporting 

system for drug-related deaths and hospital emergencies. Data from the 662 participating 

emergency centres showed 111 events in October 1976 versus 54 events in October 1974; 

and reports of PCP-related deaths increased over roughly the same period from 17 in 

April 1976 to 30 in March 1977 (22). Undesirable psychological reactions were frequent. 

In a 1978 study at one urban psychiatric hospital, PCP was detected by blood analysis in 

78.5% of 150 consecutive involuntary admissions (26).  

 

Because PCP abuse occurred as a regional epidemic clear evidence of an association with 

formally diagnosable psychotic disorder emerged. In the mid- to late-1970’s many case 

series reports of PCP-related psychotic disorder admitted to mental health services were 

published (e.g. 27-42), describing close temporal and regional associations between 

changes in illicit PCP production, levels of PCP abuse among young people, and changes 

in rates of emergency presentation of PCP-related psychotic disorder in this age group. 

Washington DC, a major centre for PCP production and abuse in the early 1970’s, 

illustrates this point. The first hospital admissions for PCP psychosis occurred in late 

1973. Thereafter, the admission rate increased rapidly to a peak in February 1974, when 

one-third of all first psychiatric admissions were diagnosed with PCP psychosis. In 

March 1974, police closure of a local illegal PCP laboratory resulted in a marked drop to 

no more than three new cases of PCP-related psychosis per month in April, May, and 

June 1974. A new epidemic of PCP psychosis occurred in 1975 and 1976. In early 1976 

law enforcement agencies pronounced the Washington metropolitan area the PCP capital 

of the country, and increased raids on local illegal PCP laboratories. Thereafter a slow but 

steady decline in psychiatric admissions for PCP psychosis occurred (29).  

 

Although a strong relationship between PCP abuse and psychotic disorder was evident, 

the face validity of PCP-induced psychosis as a model for schizophrenia also requires 

close phenomenological similarity between the two disorders. To make this comparison, 

three types of PCP-related conditions need to be distinguished: acute intoxication without 
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delirium (a ‘bad trip’); acute intoxication with delirium; and the more persistent drug-

induced psychotic disorder (38). Duration of acute PCP intoxication parallels the half-life 

of the drug. Symptom severity is dose-dependent. Acute intoxication without delirium 

lasts about 3-8 hours and presents with restlessness, agitation, hallucinations, delusions, 

nystagmus, hypertension, tachycardia, ataxia, slurred speech, and hyper-reflexia (38, 43, 

44). PCP-induced delirium represents a more profound degree of toxicity, which can 

persist for a week. Dose-dependent clinical features include clouding of consciousness, 

disorientation, toxic psychosis, vomiting, hyper-salivation, spasticity, EEG slowing or 

seizures, and respiratory depression (33, 38, 43, 45, 46).  

 

In addition to acute intoxication syndromes, PCP induces psychotic disorder that is very 

similar to schizophrenia or schizoaffective disorder in the absence of delirium (22, 27-29, 

31, 32, 34, 36-38, 40, 41, 47-49). The duration of PCP-related psychosis bears no 

relationship to ingested dose or drug half-life. It characteristically shows sudden 

resolution within 2 to 4 weeks (29, 41), though on occasion persists for months. Patients 

with PCP-related psychosis could not be distinguished from schizophrenia patients on the 

basis of presenting symptoms (31, 33). All domains of schizophrenic symptomatology 

seemed to be represented. Prominent positive symptoms were reported: paranoia; and 

persecutory and grandiose delusions (31, 34, 36, 37, 39, 48, 50) often with bizarre 

Schneiderian qualities (33, 40, 51); and hallucinations in all modalities (31, 33-37, 39, 46, 

48, 50). Formal thought disorder with loosening of associations, cognitive 

disorganization, perseveration or thought blocking occurred (27, 33, 34, 36-39, 50). 

Catatonic behaviour in a variety of forms was almost universally present with PCP-

psychosis: inappropriate and unpredictable behaviour; excitement and violence; nudism; 

mannerisms and stereotypies; and catatonic posturing and mutism (13, 31, 33-41, 45, 46). 

Features resembling negative symptoms also occurred: blunted affect (46); apathy and 

emotional disengagement (38); social withdrawal and autistic behaviour (27, 31, 37); and 

amotivation (27, 31, 37, 38, 46).  

 

Despite marked similarities between PCP psychosis and schizophrenia, cross-sectionally 

there were atypical features: a predominance of visual or haptic hallucinations over 



Catts & Catts: The psychotomimetic effects of PCP, LSD, MDMA: Pharmacological models of schizophrenia? 

Unabridged manuscript, in press February 2008.   Review obtained from www.qsrf.com.au 7 

auditory hallucinations; distortion of time appreciation and body image disturbance; and 

prominent somatosensory deficits, especially diminished proprioception and pain 

perception (19, 51, 52). As well, there were differences in psychiatric history with a 

relatively high proportion of patients not having a family history or personal history of 

schizophrenia, and an absence of previous psychiatric history or evidence of prodromal 

psychosocial deterioration (22, 28, 29, 38, 47, 49, 53). Although most cases of PCP-

psychosis resolved within two weeks without sequelae (29), about 25% of patients went 

on to have a typical history of schizophrenia (37). This subgroup of patients took months 

rather than weeks to recover from the first PCP-related psychotic episode, tended to have 

a family history of schizophrenia, and a personal history of other psychiatric disorder (29, 

31, 39).  

 

A point of disagreement in the clinical literature concerns the effectiveness of dopamine 

D2 receptor (D2R) antagonist antipsychotics in the treatment of acute PCP psychosis. 

Some studies concluded benzodiazepines (13, 27, 33, 34, 45) were preferable to 

haloperidol or chlorpromazine in PCP intoxication whilst others favoured haloperidol 

(35, 42, 54, 55). Apart from one group (42, 55), most agreed that antipsychotic and 

sedatives may reduce agitation, however no pharmacological treatments appeared to 

shorten the course of the psychotic illness (13, 34). Luisada & Brown (37) noted that in 

the cases subsequently re-diagnosed with schizophrenia, acute response to antipsychotic 

drugs was faster and superior after re-diagnosis than during the first PCP-induced episode 

of psychosis. The equivocable response of PCP psychosis to D2R antagonists was the 

first clue that PCP psychosis may not be primarily linked to dopamine dysregulation.  

 

Experimental studies using PCP in hospitalized patients with chronic schizophrenia 

supported the view that the psychotomimetic effect of PCP was directly related to 

mechanisms producing the symptoms of schizophrenia (56-58). Luby et al. (56) reported 

that immediately after IV PCP, patients showed an acute intensification of thought 

disorder and inappropriate affect: “it was as though … the acute phase of their illness had 

been reinstated”. Chronic patients frequently manifested symptom relapses persisting for 

more than a month after a single IV dose of PCP, indicating that PCP may act on a 
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fundamental disease process. That is, PCP exaggerated pre-existing, or precipitated an 

acute relapse of previously experienced, phenomenology rather than added qualitatively 

different psychotic symptoms. Response to PCP in patients was distinctly different to that 

with LSD or mescaline which produced a milder and brief change in the level of 

symptoms, mainly by adding qualitatively different symptoms such as kaleidoscopic 

visual hallucinations (49, 50, 56, 57). Providing the first suggestion that prefrontal 

mechanisms were directly related to PCP effects, Itil et al. (58) found that leucotomised 

patients with schizophrenia did not show as marked a response to PCP compared to un-

leucotomised patients. 

 

Experimental studies using PCP in human volunteers (HVs) also supported the view that 

PCP comprehensively induced symptoms resembling schizophrenia (52, 53, 56, 59, 60). 

Luby et al. (56) gave 9 HVs PCP in a subanaesthetic dose (0.1 mg/kg IV). All subjects 

experienced “body image changes” (impaired ability to distinguish between self and non-

self stimuli, feelings of depersonalization, and a sense of unreality), “estrangement” 

(profound sense of aloneness or isolation, of being detached from the environment), and 

“disorganization of thought” (inability to maintain a set, frequent loss of goal ideas, 

impairment of abstract attitude, blocking, neologisms, word salad, and echolalia). Most 

subjects experienced negativism and hostility (child-like oppositional behaviour and 

catatonia-like reactions); and about one third showed repetitive motor behaviours 

(rhythmic body movements, including rocking, head-rolling, and grimacing). In another 

study of 12 HVs, PCP (0.075-0.1 mg/kg IV) induced positive symptoms (auditory 

hallucinations and thought disorder), negative symptoms (blunting, apathy and 

amotivation), catatonic features (psychomotor retardation, negativism and catatonic 

immobility), and cognitive deficits (associative learning and abstract reasoning deficits) 

(52). In contrast to LSD or mescaline, PCP in HVs induced perseveration and 

concreteness, and nystagmus: in common with LSD and mescaline, PCP induced body 

image disturbance, depersonalization, and disturbances in time appreciation (52). One 

study of seven HVs given 12 mg PCP by slow IV injection provided detailed descriptions 

of phenomenology (60). After a brief period of disorientation cleared, PCP caused 

marked cognitive deficits affecting “the function that combines, unifies, and integrates all 
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available information into a field which is meaningful” and preventing “goal-directed 

behaviour”. Formal thought disorder (both loosening and concreteness) was apparent, 

including “catatonic-like perseveration”. Sensory filtering deficits occurred so that the 

subject “was unable to focus actively on particular areas of his perceptual field [and] had 

become a victim of all inflowing stimuli but could not screen out the irrelevancies”. Also, 

sensory distortions were experienced, like hearing your voice “seem to come from a 

distance – as if someone else were speaking” whilst intellectually knowing that it was 

yourself speaking. Feelings of passivity emerged so that “the subject saw his arms and 

legs move and yet did not have the feeling that he himself was making these 

movements”. A profound sense of apathy and amotivation accompanied the PCP-induced 

psychotomimetic effects. Bakker and Amini (60) hypothesized that PCP produced a 

converse psychic state to that induced by LSD and psilocybin. 

 

Moreover, early neurocognitive studies in HVs demonstrated PCP-induced deficits 

resembling those seen in schizophrenia. Rosenbaum et al. (53) compared three groups of 

HVs, 10 receiving PCP (0.1 mg/kg IV), 10 receiving LSD orally (1 ug/kg), and five 

receiving 500 mg amobarbital sodium IV (amphetamine 15 mg added to counter 

drowsiness associated with the barbiturate). Using a crude measure of attention, only PCP 

(i.e. not LSD or barbiturate) produced a deficit equivalent to that observed on the same 

test in patients with schizophrenia. On a motor learning task, the performance of only the 

PCP treated HVs dropped to the level of patients with schizophrenia. Cohen et al. (59) 

compared the effects of PCP, LSD and amobarbital sodium (amphetamine 15 mg added) 

in three groups of HVs. In a test of symbolic thinking (proverb interpretation), only PCP 

subjects (i.e. not LSD or barbiturate) showed deficits in symbolic thinking quantitatively 

equivalent to those seen in groups of patients with schizophrenia. Similar findings were 

made in relation to a test of sustained attention (serial sevens). 

 

In summary, the psychotomimetic effects of PCP were first recognised as emergence 

phenomena when it was used as an anaesthetic. During a PCP abuse epidemic in the 

United States, it became evident that PCP induced formal psychotic disorder, even in 

individuals without evidence of predisposition to schizophrenia. The phenomenology of 
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the psychotomimetic effects of PCP were schizophrenia-like in range and quality, 

whether observed as anaesthetic emergence phenomena, presenting symptoms of PCP-

induced psychotic disorder, or behavioural change induced by experimental use of PCP 

in patients with schizophrenia or HVs. Clinicians who observed PCP-induced symptoms 

recognised signs that Bleuler (‘loosening’ plus ‘concreteness’) and Kraepelin 

(‘weakening…volition’ plus ‘loss of inner unity of the activities of intellect, emotion and 

volition’) deemed primary to, and processes (e.g. sensorimotor gating, [61]) that 

psychologists considered characteristic of, schizophrenia. Because PCP was made illegal 

for use in human research in 1965, no studies measuring the effect of PCP on putative 

biomarkers of schizophrenia (e.g. prepulse inhibition [PPI], smooth pursuit eye 

movement [SPEM], P50 suppression or mismatch negativity [MMN]) or functional 

neuroimaging measures, were carried out in patients with schizophrenia or HVs. This 

type of human research had to await the introduction of ketamine, a safer and less potent 

psychotomimetic analogue of PCP.  

Ketamine 

Analogues of PCP were researched as alternative dissociative anaesthetic agents that 

might have fewer adverse reactions than PCP, the most important being ketamine [2-(2-

chlorophenyl)-2-(methylamino)-cyclohexanone]. Ketamine was first synthesised in 1961, 

first tested in human volunteers in 1964 (62), and first approved for general clinical use in 

1970. It is used intravenously (analgesic dose, 1-2 mg/kg; anaesthetic dose, 5-10 mg/kg), 

intramuscularly (analgesic dose, 1.5-2mg/kg; anaesthetic dose, 4.0-6.0 mg/kg), and less 

frequently as an oral (100-300 mg/kg) anaesthetic (63, 64). Ketamine is highly lipid 

soluble and readily crosses the blood-brain barrier, inducing CNS effects within seconds 

of IV injection. The plasma half-life of ketamine has been reported to be 1-2 hours (65). 

When ketamine is used intravenously, duration of anaesthesia is dose-dependent and may 

be as brief as 30 minutes (66, 67) with complete recovery taking several hours. Because 

ketamine does not depress respiratory or cardiovascular systems, it was widely used as a 

field anaesthetic by the US army during the Vietnam War and continues to be marketed 

as a valuable anaesthetic for human procedures, especially in children, and in veterinarian 

practice.  
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While ketamine anaesthesia can produce emergence phenomena in up to 30% of 

anaesthetised adults, the symptoms are not as severe as those produced by PCP (49, 68). 

Emergence symptoms include alterations in mood state and body image, dissociative and 

out of body experiences, floating sensations, vivid dreams or illusions, ‘weird trips’, and 

occasionally delirium (64). Between 10-15% of post-operative patients show 

hallucinatory reactions (69, 70). Ketamine emergence phenomena are dose-dependent 

and age-related, with an incidence of less than 10% in patients less than 16 years old (64). 

Compared to standard anaesthesia (halothane/nitrous oxide), ketamine does not cause an 

excess of emergence reactions in children (71). In adults, pre-treatment with droperidol or 

haloperidol is inferior to benzodiazepines in preventing vivid emergence reactions and 

delirium following ketamine (reviewed in 64). In summary, when used as an anaesthetic 

ketamine induces emergent psychotomimetic effects qualitatively similar to PCP but 

quantitatively substantially less intense, in line with its more than 10-fold lower PCP-like 

activity (72) and about 30-fold lower NMDA receptor complex binding affinity (73, 74). 

 

Despite warnings about its abuse potential (75), ketamine eventually appeared on the 

streets (known as ‘Special K’, ‘Vitamin K’ or ‘K’) in the early 1970’s (25, 76) in the 

same way that PCP did in the 1960’s. Ketamine use was popularised by publication 

accounts (77). In 1978 ketamine was authoritatively described as the “ultimate 

psychedelic” (78). Ketamine is typically inhaled or injected intramuscularly (79). 

Ketamine users try to achieve or ‘fall into’ a ‘k-hole’ of social detachment lasting up to 

an hour. This experience includes a distorted sense of space, so that a small room appears 

the size of a football field, and an indistinct awareness of time, so that a few minutes 

seems like an hour (80). Physical immobilization and disengagement from time and space 

is associated with psychedelic experiences such as spiritual journeys, interaction with 

famous or fictitious people, and hallucinatory visions. The k-hole ends abruptly though 

can quickly be re-entered with another injection of ketamine (79).  

 

Unlike PCP, ketamine is difficult to manufacture and most recreational users acquire it 

through diversion of prescription product or theft from veterinary supplies (81). In the 
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1970’s and 80’s recreational use was restricted to a select group of the intelligentsia. 

Expanded use emerged in the context of the subcultural music phenomenon known as 

‘acid house music’ and large scale parties called ‘raves’ (76, 82). Although there has been 

a growing number of reports of illicit use of ketamine in many countries (63), in 

comparison to other club drugs such as Ecstasy (MDMA), its use remains restricted to a 

small number of polysubstance abusers (81, 83). Currently, the lifetime prevalence of 

ketamine use is in the order of 0.7 – 2.6%, depending on the age and nationality of the 

study populations (83). Adverse events specifically related to illicit use of ketamine are 

difficult to ascertain because 80% of patients presenting to hospital emergency 

departments reporting ketamine use also report concurrent use of other drugs. Reasons 

for going to the emergency department include overdose (47%), unexpected reaction 

(28%), chronic effects (11%), or seeking detoxification (9%)(80). 

 

Because there have been no regionally or temporally circumscribed epidemics of illicit 

ketamine use, it has been difficult to establish the psychiatric consequences of its abuse. 

The main evidence for a link between ketamine abuse and psychotic disorder is based on 

the occasional psychiatric case series report (e.g. 77, 84, 85); survey data of ketamine 

users who reported auditory hallucinations, paranoia, loose associations, and unusual 

thought content among the behavioural effects of ketamine (86); and psychometric data 

on small groups of ketamine users (87-90). Chronic ketamine abusers had higher scores 

on tests of delusional ideation and schizotypal symptomatology, which increased with 

acute dosing of ketamine (87-90), but also remained elevated at short-term follow-up (88, 

89). The very limited literature on the neurocognitive effects of ketamine abuse suggests 

acute induction of impairments of working, episodic and semantic memory (89), and with 

chronic ketamine use, induction of chronic impairments in episodic memory (90). In 

summary, there is evidence of an association between ketamine abuse and increased 

proneness to quasi-psychotic symptoms and neurocognitive deficits, and psychotic 

disorder resembling schizophrenia, however the research supporting these associations is 

under-developed and does not define the strength of these associations. 
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In contrast to patient studies using PCP, experimental use of ketamine in hospitalised 

patients with chronic schizophrenia is considered ethically acceptable (91). This is partly 

based on experience using ketamine as an anaesthetic for surgery in patients with 

schizophrenia stabilised on antipsychotic medication, which was associated with only 

brief mild post-operative disturbance and not major psychotic relapse (92). Lahti et al. 

(93) gave subanaesthetic does of ketamine (0.1, 0.3 and 0.5 mg/kg IV) to 9 hospitalised 

patients with schizophrenia stabilised on haloperidol (0.3 mg/kg/day for at least 12 

weeks). Six of the 9 patients were withdrawn from haloperidol for more than 4 weeks 

before being re-challenged with ketamine. In patients on haloperidol, ketamine induced 

20 minutes post-injection about a 3-fold increase (dose-related) in BPRS psychosis 

scores, which returned to baseline within 90 minutes (though four out of the 9 patients 

reported delayed recurrence of psychotic symptoms for 24 hours after ketamine). In 

patients off haloperidol, ketamine induced dose-dependent increases in BPRS psychosis 

scores. Although ketamine-induced BPRS psychosis scores were slightly higher in 

patients off haloperidol compared with the same patients on haloperidol, it was clear that 

haloperidol provided little protection against the psychotomimetic effects of ketamine. 

Qualitatively there was remarkable similarity between the themes and content of 

psychotic symptoms induced by ketamine and symptoms associated with the patients’ 

schizophrenic illness (93). In a replication study, Malhotra et al. (94) gave ketamine (0.77 

mg/kg IV over one hour) to 13 hospitalised patients with schizophrenia and neuroleptic 

free for at least 2 weeks, and 16 HVs. In both unmedicated patients and HVs, ketamine 

produced significant increases in total BPRS scores, reflecting increased thought disorder 

and increased negative symptoms (withdrawal-retardation). Neurocognitive testing 

showed unmedicated patients and HVs both had significant ketamine-induced 

impairments in verbal recall and recognition memory, patients performing worse than 

HVs. When re-challenged with ketamine, patients subsequently stabilised on clozapine 

showed significantly blunted ketamine-induced increases in BPRS psychosis ratings (95). 

In another replication, Lahti et al. (96) gave ketamine (0.1, 0.3 and 0.5 mg/kg IV) to 17 

hospitalised patients with schizophrenia stabilised on haloperidol (0.3 mg/kg/day for at 

least 12 weeks) and 18 HVs. Patients and HVs showed significant ketamine-induced 

increases on the three components of the BPRS psychosis score (thought disorder, 
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hallucinations, and delusions), and the BPRS withdrawal score, which reversed within 90 

minutes post-injection. Approximately 70% of patients experienced ketamine-induced 

symptoms strikingly reminiscent of their usual psychotic symptoms during an illness 

exacerbation. In summary, unlike PCP the reaction to ketamine was mild and very brief 

in medicated patients, and more pronounced though still brief in unmedicated patients.  

 

Experimental studies using ketamine in HVs have mainly focused on neurocognitive 

measurement. However, the recent challenge (97) to the view that ketamine is a 

psychotomimetic agent demands a brief review of the symptom-based literature. 

Ghoneim et al. (98) were the first to investigate the behavioural effects of subanaesthetic 

doses of ketamine in 34 HVs. Intramuscular ketamine (0.25 and 0.5 mg/kg) induced self-

reported visual hallucinations (not auditory) in 75% of subjects at 0.25 mg/kg and 77% at 

0.5 mg/kg. A minority of subjects also reported paranoid feelings of being manipulated or 

controlled during the experiment. In the second study, 18 HVs were given ketamine IV 

for 40 minutes (99). Ketamine 0.5 mg/kg (but not 0.1 mg/kg) induced significant 

increases in BPRS psychosis score 10 minutes from onset of the infusion until 15 minutes 

after the ketamine infusion was ceased. Ketamine significantly increased each of the four 

positive symptom sub-component scores (thought disorder, hallucinatory behaviour, 

suspiciousness, and unusual thought content or delusions). Hallucinatory behaviour was 

limited to illusionary experiences. Ketamine also induced significant increases in the 

BPRS hostility-suspiciousness factor score (hostility, suspiciousness, uncooperativeness, 

and grandiosity), and significant increases in BPRS negative symptoms. Comparable 

ketamine-induced symptoms to those noted in the two initial HVs studies have been 

observed in the many subsequent challenge studies (100-107). This comparability 

extended to the fine grained level of symptom structure, as was evident when the 

component structure of ketamine-induced conceptual disorganization in HVs was shown 

to closely overlap with the structure of formal thought disorder in patients with 

schizophrenia (101, 102). In summary, ketamine induces attenuated rather than frank 

hallucinations and delusions at the low doses typically used in experimental studies of 

HVs, and the impression that it is not psychotomimetic is inconsistent with the high rates 
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of emergence phenomena when used as an anaesthetic in adults and elicitation of frank 

psychotic symptoms when studied in patients with schizophrenia.  

 

Experimental studies of the effects of ketamine in HVs confirm that ketamine-induced 

neurocognitive deficits show striking resemblance to those seen in schizophrenia (108, 

109). In contrast to the crude assessments used in PCP studies, tests used in ketamine 

studies have good psychometric properties and can differentiate types of deficits (e.g., 

episodic versus working memory) and cognitive dysfunctions (e.g., encoding versus 

retrieval). Episodic memory (EM) refers to memory for events (sometimes called 

declarative or explicit memory). EM can be tested at the level of recall (generating a list 

of words or a story from memory) or recognition (deciding whether words have been 

previously presented). Deficits in recall may be caused by impaired encoding or retrieval 

of material; whilst deficits in recognition memory are caused by impaired encoding. EM 

deficits implicate medial temporal lobe structures, including the hippocampal formation. 

Prefrontal structures support higher order information processing such as: short-term 

online memory used to maintain and manipulate information (called working memory); 

executive functions (planning, decision making, and abstract reasoning); selective 

attention and vigilance; and verbal fluency. Psychomotor speed is particularly sensitive to 

prefrontal dysfunction. Inhibition is central to performing prefrontal-related tasks, which 

is subserved by intracortical circuits, and feedback loops with subcortical structures, 

especially the thalamus and basal ganglia (110-112). 

 

Deficits in EM are consistently induced by ketamine in HVs (98, 99, 103, 107, 113-119), 

a result not seen with acute amphetamine challenge (104). A substantial literature 

indicates selective deficits at the level of encoding (recognition memory) rather than at 

the level of retrieval (99, 103, 107, 114, 119-122), a selective effect consistent with 

differential system dysfunction (123). Ketamine also induces deficits in working memory 

in HVs (100, 104, 107, 121, 124), with greater impact on manipulation compared with 

maintenance of information in working memory (108, 124), a distinction reviewed 

elsewhere (123). Deficits in working memory are not observed in acute amphetamine 

challenge (104). Ketamine induces deficits in other prefrontal functions including: 
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abstraction deficits in relation to proverb interpretation (115, 116); perseverative errors in 

sorting tasks (99, 115, 116); impaired response inhibition (119); and impaired vigilance 

(104, 116), the latter not seen with acute amphetamine challenge (104). Most studies 

show that ketamine induces deficits in selective attention (99, 103, 115, 125, 126), but 

not all (100, 107). Although only some studies report verbal fluency deficits (99, 100, 

114, 116) and others do not (107, 115, 119, 127, 128), verbal fluency deficits are found in 

chronic ketamine recreational users (88, 89). Psychomotor speed is also slowed by 

ketamine (113, 121, 129). In summary, the pattern of neurocognitive deficits induced by 

ketamine resembles that seen in schizophrenia, and implicate dysfunction in the 

prefrontal cortex (130) and medial temporal lobe (131).  

 

More proximal evidence that ketamine induces dysfunction in brain systems affected by 

schizophrenia has been provided by regional activation studies in HVs. Regional brain 

activation changes can be assessed using functional Magnetic Resonance Imaging (fMRI) 

to measure the Blood Oxygen Level Dependent (BOLD) effect, an index of regional 

cerebral blood flow (rCBF) change, and Positron Emission Tomography (PET) to 

measure changes in regional metabolic rate, either in terms of oxygen ([15O]water) or 

glucose ([18F]flurodeoxyglucose: FDG) uptake. As functional imaging studies of 

schizophrenia have more often than not found reduced activation prefrontally (e.g., 132, 

133-135), especially in the cingulate cortex (e.g., 136, 137-140), and medial temporal 

lobe (e.g., 133, 135, 141), it was predicted that ketamine would induce decreases in 

regional brain activation in the same areas in HVs. However, contrary to hypothesis, 

acute ketamine dosing increases activation prefrontally (106, 142-147) including the 

cingulate cortex (106, 142, 147), and thalamus (106, 146-148). No studies reported 

changes in the hippocampus or medial temporal lobe. Two functional imaging studies of 

the effects of ketamine in patients with schizophrenia have been reported: one found 

ketamine-induced blood flow increases in frontal and cingulate regions (142); the other 

found ketamine-induced increases in rCBF in anterior cingulate and reduced rCBF in 

hippocampus (93).  
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Clinical biomarkers known to be abnormal in schizophrenia have also been assessed in 

experimental studies of ketamine in HVs. Contrary to expectation, deficits in prepulse 

inhibition (PPI) analogous to those seen in schizophrenia have not been observed in HVs 

administered ketamine (149, 150). Indeed, three independent studies showed PPI 

augmentation after ketamine administration to HVs (127, 151, 152). A single study of 

schizophrenia-like oculomotor abnormalities in HVs administered ketamine showed 

ketamine-induced smooth pursuit eye tracking deficits (114). Ketamine does not 

significantly reduce P50 suppression (149, 150). Deficits in MMN analogous to those 

observed in schizophrenia have been reported in HVs administered ketamine (153, 154).  

 

To conclude, ketamine produces less potent PCP-like psychotomimetic effects 

commensurate with its more than 30-fold lower NMDA receptor complex binding 

activity (73, 74) compared with PCP. Qualitatively however, the two analogues induce 

equivalent psychotomimetic phenomena at the level of symptoms, neurocognition, and 

regional brain activation. It can be concluded therefore that ketamine challenge studies in 

HVs have face (and to a degree, construct) validity as preclinical models of PCP 

psychosis, and in turn as models of schizophrenia. Additional support for PCP-related 

models may be offered by comparing them with serotonergic models to examine 

evidence for discriminant validity. This will be sought by reviewing the psychotomimetic 

effects of the 5HT2A agonist, LSD, and the indirect serotonergic agonist, MDMA.  

Lysergic acid diethylamide (LSD) 

LSD (D-lysergic acid diethyamide) was originally synthesised in 1938 but its 

psychotomimetic effects were not discovered until 1943 when one of its co-discoverers 

experienced “fantastic visions of extraordinary vividness accompanied by a kaleidoscopic 

play of intense coloration” following inadvertent ingestion (155). LSD acts primarily as a 

functional agonist at the 5HT2A receptor (156). LSD quickly distributes to the brain and 

other body compartments, is metabolised in the liver and kidneys, and excreted in faeces. 

Effects of LSD are felt within an hour after ingestion and can last from 6 to 12 hours, 

although LSD cannot be detected in brain 20 minutes after ingestion. Oral 

psychotomimetic dosages are in the 25-150 μg range. Sensory perceptions are altered and 
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intensified so that colours appear brighter and sounds become magnified or perceived as 

patterns; there is a merging of senses (synesthesia) so that sounds become whirling 

patterns of vivid colour; perceptions of time and space are distorted, so that seconds may 

seems like an eternity, and objects become fluid and shifting. Depersonalisation; 

experience of feeling merged with another object or another person; hallucinations and 

visions; and religious revelations and spiritual insights, have been reported (157-159). 

That is, LSD intensifies emotional experience as much as perceptual experience (160). 

Physical effects are few and the lethal dose of LSD is so high that it has not been 

estimated. Psychological dependence is very uncommon (161). Physical dependence does 

not develop with LSD (162) however if used daily, tolerance to the psychotomimetic 

effects of LSD develops rapidly but disappears after a few days abstinence (157, 158). 

Legal production of LSD during the late 1940s and 1950s was directed towards research 

by the US Army (as a ‘truth serum’ or brain washing agent) and psychiatrists (as an 

adjunct to psychotherapy). 

 

Around 1962 progressive restriction of legal use of LSD led to a dramatic increase in 

illegal production and illicit use throughout the US and internationally, promoted by the 

writings of a Harvard University instructor who became a media figure popularising LSD 

and the hippie movement with his catch phrase “Turn on, tune in and drop out” (155). 

The use of LSD peaked in the late 1960s and then steadily declined to a low but stable 

level in the 1970s. In the early to mid-1980s there appeared to be decreased interest in 

LSD, possibly due to reports of negative drug effects (163). Like ketamine, LSD re-

emerged in the context of ‘acid house’ music and ‘rave’ parties (76, 82). In an European 

(164) and an Australian (165) study, prevalence of use was over 30% amongst youth 

attending rave or dance parties. Whilst the annual prevalence of illicit LSD use amongst 

high school students in the USA decreased from 1980 to 1990, in the mid-1990s 

prevalence again increased to almost 10% (163). However, probably due to efforts by law 

enforcement, use of LSD decreased to its lowest level in 2005 (163), paralleled by a 

significant decline in use among dance drug users, at least in the UK (166).  
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No epidemiological study has determined the relationship between LSD use and the 

incidence of psychotic disorder. Initially LSD was considered to have therapeutic value 

and reviews of its use with psychiatric supervision concluded that prolonged psychosis 

following LSD was rare (167-170). LSD therapy was initially applied to patients with an 

established history of schizophrenia with only a small risk of causing relapse (171, 172). 

However, following broader illicit use of LSD in the late 1960s a number of case series 

reports of psychosis in patients using LSD were published (reviewed by 173, 174, 175). 

Patients with psychotic disorder who had used LSD were said to present with 

phenomenologically similar symptoms and outcome to those with schizophrenia who did 

not take LSD (175-181). However, in contrast to patients with PCP-induced psychosis, 

most individuals presenting with psychosis in the setting of LSD abuse showed poor 

premorbid adjustment and/or prior psychiatric admissions (175-181) or family history of 

psychotic or other serious psychiatric illness (179, 182). Contemporary clinicians could 

not determine whether psychosis in the setting of LSD abuse was a separate diagnostic 

entity or simply represented a subgroup of patients with schizophrenia who used LSD. 

An important area of agreement in the clinical literature was the view that the symptoms 

of acute LSD intoxication were phenomenologically different to the symptoms of 

schizophrenia (183-186). LSD-induced perceptual disorders are visual rather than 

auditory; the visual distortions are not frank hallucinations but have the character of 

illusions; delusional ideation is not stable and usually insight is retained; negative 

symptoms are at most mild; and, LSD-induced phenomenology is often distinguishable 

by patients with schizophrenia from their primary symptoms (183-186). In marked 

contrast to both schizophrenia and PCP psychosis, the hallucinogenic effects of acute 

LSD intoxication subside rapidly with benzodiazepines (44) unless delirium is evident. 

Other dissimilarities with schizophrenia were reported in LSD-related (N,N-

dimethyltryptamine [DMT] or psilocybin) challenge studies in HVs measuring PPI (151, 

187, 188) or MMN (189, 190) which did not find deficits, although deficits in attention 

(126) and P50 suppression (187) with DMT were reported.  

 

In conclusion, although LSD has obvious hallucinogenic effects, it is debatable whether it 

should be considered psychotogenic. Indeed, support for the existence of psychotic 
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disorder specifically induced by LSD as a diagnostic entity is inconclusive. Despite 

periods of relatively high and low rates of use of LSD in communities, no formal or 

informal epidemiological data have linked fluctuations in community use to variations in 

the incidence of psychotic disorder. In fact, only a total of 75 individual case reports of 

putative LSD-psychosis were found in a recent world-wide review (175). The occurrence 

of psychosis in the setting of LSD abuse appears to be more related to individual 

vulnerabilities than specific drug actions. This does not mean that adverse events with 

LSD do not occur (174). Acute LSD intoxication is associated with panic attacks and 

harm from misadventure, and a long-term consequence, Hallucinogen Persisting 

Perception Disorder (HPPD) or ‘flashbacks’, has diagnostic validity (191). Nonetheless, 

models based on LSD-related drugs are not irrelevant to the study of schizophrenia, 

especially to investigate disturbances in serotonergic regulation (192, 193), because of 

the 5HT2A receptor antagonist actions of atypical antipsychotics (186, 194, 195), and the 

potential relevance of interactions between glutamatergic and serotonergic systems in the 

pathogenesis of schizophrenia (126, 156, 196-199). An example of this type of 

interaction is the recent discovery that functional complexes form between 5HT2A 

receptors and group II metabotropic glutamate receptors (mGluR2) in brain cortex, 

complexes which are targeted by LSD (200). For the purposes of this review however at 

this stage we conclude our formal consideration of LSD-induced psychotomimetic effects 

as a model of schizophrenia. 

Ecstasy 

MDMA (3,4-methylenedioxy-methamphetamine) is a ring-substituted amphetamine 

derivative. It was patented in 1914 but never made commercially available. MDMA was 

classified a restricted drug in the United Kingdom in 1977 and in the United States in 

1985. MDMA is almost always consumed orally, the psychoactive dose being about 100 

mg. The primary effect of MDMA is to produce a positive mood state with feelings of 

euphoria, intimacy and closeness to other people, an effect that distinguishes it from 

amphetamine or hallucinogens (201). MDMA also has stimulant effects as well as mild 

psychedelic effects on insight and perceptual and sensual enhancement. The peak 

psychoactive effects last on average 4-6 hours, though the half-life of MDMA is 
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approximately 9 hours in humans (202). Tolerance to the psychoactive effects develops 

rapidly (203). No physical withdrawal syndrome has been described (204), but 

psychological dependence is common (161, 205, 206). Illicit Ecstasy tablets often contain 

compounds related to MDMA, such as MDE (3,4-methylenedioxy-methamphetamine). 

The generic term ‘Ecstasy’ is now preferred because it may refer to MDMA, analogues 

of MDMA, or a combination of these (207). Ecstasy use by young people has worldwide 

popularity (208, 209). In the United Kingdom during the mid-1980s the drug of choice 

for people attending raves was Ecstasy and the popularity of this youth culture resulted in 

an explosion in recreational use. Among US college students there was a steady increase 

in Ecstasy use from 2.0% in 1991 to 13.1% in 2000 (210). Similarly, in the Australian 

general population there is a steady increase in the proportion of people who have ever 

tried Ecstasy from 4.8% in 1998, 6.1% in 2001, to 7.5% in 2004 (211, 212). Amongst 

dance or rave party attendees, the use of Ecstasy is far more common (up to 80% 

prevalence) than the use of ketamine and PCP (83, 164, 165); however, polysubstance 

abuse (especially methamphetamine, cannabis and hallucinogens) among Ecstasy users is 

the norm (80, 213-215). 

 

Public alarm concerning the dangers of Ecstasy use initially arose from reports of sudden 

death in young healthy users, especially when ingestion occurred at dance parties which 

were typically hot, crowded venues with loud repetitive music and light shows (216, 

217). Cause of death was either cardiac arrhythmia or malignant hyperthermia, and 

usually related to polysubstance ingestion (218). However, a direct link between the 

fatalities and Ecstasy use is supported by a strong correlation between rates of Ecstasy 

use and rates of fatalities (219). Milder effects of intoxication include nausea, loss of 

appetite, tachycardia, hypertension, jaw tension, bruxism and sweating (215). Chronic 

adverse events associated with Ecstasy use include extensive polydrug use, high rates of 

intravenous drug use, and financial, relationship and occupational problems (214).  

 

Of particular concern is evidence of associations between Ecstasy use and neurocognitive 

deficits. These associations remain controversial. Although there are several cross-

sectional studies showing cognitive impairment in Ecstasy users (reviewed in 220), there 
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is evidence that these impairments may be due to polysubstance abuse rather than Ecstasy 

use itself (221, 222). Although the evidence from longitudinal studies for an association 

between chronic Ecstasy use and long-term neurocognitive impairment is fairly 

consistent (223), this association also remains controversial. In a major review, Morgan 

(220) concluded that in many longitudinal studies the evidence for an association 

between selective memory impairments and chronic heavy recreational use of Ecstasy 

may be confounded by polysubstance abuse. There are studies showing a correlation 

between the total dose of MDMA exposure and memory performance (224-226), but 

again this association is open to confounding by polysubstance abuse. Moreover, a 

consistent profile of neurocognitive deficits in Ecstasy users is not evident, some 

reporting mainly prefrontal deficits (e.g. 227), others observing mainly hippocampal-

related memory deficits (228), whilst others find both (226). In summary, researchers 

hold polarised views on the harm of Ecstasy use seemingly reflecting divided public 

opinion, with some concluding evidence of harm is definitive (229, 230) whilst others are 

equally certain that evidence of harm is inconclusive or absent (208). 

 

Although there are many studies reporting an association between Ecstasy use and mental 

disorder (especially depression and anxiety), it is impossible to determine in cross-

sectional studies whether this relationship is due to Ecstasy, associated polysubstance 

abuse (208), and whether it pre- or post-dates Ecstasy use. In prospective (231) or 

retrospective (232) comparisons of the age-of-onset of mental disorder and age-of-onset 

of Ecstasy use, psychiatric disorder appeared to precede Ecstasy consumption. A meta-

analysis showed that the strength of the association between Ecstasy use and depressive 

symptomatology was weak and unlikely to be clinically relevant (233). 

 

Psychotic disorder as an adverse reaction to Ecstasy use appears to be rare and 

idiosyncratic, mainly determined by user-related variables (familial predisposition; 

previous psychotic episodes; very high dose exposure; and polysubstance abuse) rather 

than be drug-related. Soar et al. (234) reviewed published psychiatric case studies from 

the previous 10 years involving MDMA. Of the 38 cases, 22 had a psychotic disorder or 

symptoms. Two of this subgroup had a family history of psychosis, an observed rate that 
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is precisely comparable to the expected rate with schizophrenia itself. As well, in the 

psychotic patients confounding arose from greater Ecstasy use being associated with 

heavier polysubstance use. In an Italian series (235) of 32 cases of psychotic disorder in 

Ecstasy users (patients with self-reported polysubstance abuse excluded), 

symptomatology was not phenomenologically distinctive, and many cases had a family 

history of psychiatric disorder or past personal history of non-psychotic psychiatric 

disorder, making it impossible to determine whether Ecstasy was the primary cause of 

psychosis or not. In a community sample, the occurrence of schizophrenia was not related 

to heavy Ecstasy exposure (232). There is only a single case report in which experimental 

MDMA intoxication produced an acute toxic hallucinosis lasting 2.5 hours (236), 

emphasising the rarity and idiosyncratic nature of this adverse event. The lack of 

evidence of an association between psychotic disorder and Ecstasy use described above 

has not prevented opinion being published that Ecstasy “has a special risk for persistent 

organic psychoses” (229). Clinical biomarker studies have not supported MDMA 

challenge as a model of schizophrenia. Unexpected increases (i.e., not deficits) in PPI 

have been observed after administration of MDMA in HVs (237, 238) and in chronic 

ecstasy abusers (239). Therefore, for the purposes of this review at this stage we conclude 

our formal consideration of MDMA-induced psychotomimetic effects as a model of 

schizophrenia. 

Animal studies 
This Section reviews animal models induced by PCP and analogues to further assess the 

construct and predictive validity of the PCP model of schizophrenia. We examine how 

closely these animal models replicate pathophysiological and theoretical processes 

hypothesised to underlie schizophrenia. Evidence of predictive validity is presented by 

comparing the potency of novel compounds in reversing PCP-related psychotomimetic 

effects in the model with their antipsychotic effect in patients with schizophrenia. First, 

principles and constraints concerning disease modelling in animals are noted, and 

illustrated by considering the amphetamine-induced model of psychosis.  
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Animal modelling: Principles and constraints 

Attempts at modelling psychiatric diseases in their entirety is futile because rodents have 

much simpler brain structure than humans, making it impossible for rodents to display the 

same kinds of complex symptoms as humans: it is unrealistic to expect homology on all 

aspects of a disorder across two species (1, 240). A more feasible approach is to model 

specific signs or symptoms of the disease, or neurobiological correlates, for which there 

are relatively equivalent behaviours or measures in both humans and rodents. This 

approach is illustrated by the dominant animal model for schizophrenia, amphetamine-

induced hyperlocomotion in rodents, a model that currently serves as the ‘gold standard’ 

in evaluating other models, especially the PCP model.  

 

Amphetamine-induced hyperlocomotion in animals has face validity because the 

stereotypic hyperactivation of the model bears ‘symptom similarity’ to the agitation seen 

in patients with acute schizophrenia, and in turn, because amphetamine abuse is 

associated with psychotic disorder resembling schizophrenia in humans (241). The model 

also has high predictive validity because currently available antipsychotic drugs attenuate 

amphetamine-induced hyperlocomotion in rodents. The limitation of using 

hyperlocomotion as the measure of the model is that this behaviour is also reversed by 

compounds that have no antipsychotic effect clinically, and the compound with superior 

antipsychotic effect, clozapine, is no more effective in reversing hyperlocomotion than 

the conventional D2R antagonist, haloperidol (242). The dangers of basing animal 

models on symptom similarity using analogous behavioural measurement have been long 

recognised (243). A limitation with using a model that has high predictive validity for a 

single class of drugs is ‘pharmacological isomorphism’, the utility of the model being 

limited to identifying only one class of (‘me-too’) drugs and not supporting the discovery 

of drugs of a distinctly new class (9). The construct validity of amphetamine-induced 

animal models of schizophrenia has been augmented by measurement of disease markers, 

such as deficits in PPI. PPI is an example of reliable measurement of an indicator of 

human disease (also putatively indexing a theoretical process, ‘sensorimotor gating’, 

(61)) that has an equivalent measureable behaviour in the animal model ('homologous' 



Catts & Catts: The psychotomimetic effects of PCP, LSD, MDMA: Pharmacological models of schizophrenia? 

Unabridged manuscript, in press February 2008.   Review obtained from www.qsrf.com.au 25 

measurement, 243). However, the disease non-specificity of PPI and hyperlocomotion 

constrains their utility in animal studies of the pathophysiology of schizophrenia.  

 

This constraint has been addressed in amphetamine-induced animal models by measuring 

brain system/neuronal dysfunctions, in addition to assessing behavioural change. A step 

in this direction was based on findings in rodents and primates that induction of 

hyperlocomotion by dopamine agonists (e.g. amphetamine) is related to increased 

subcortical dopamine release in ventral striatum (244-249). Notably, these preclinical 

findings informed research that produced the first direct evidence in living patients of 

significant dysregulation of subcortical dopamine neurotransmission in schizophrenia 

using an in vivo receptor binding method (250), a consistently confirmed finding 

(reviewed in 251). Patients show amphetamine-induced sensitivity to presynaptic 

dopamine release resulting from inhibition of the dopamine transport (DAT) and the 

vesicular monoamine transporter (VMAT). Increases in positive (but not negative) 

symptoms in patients following amphetamine challenge were found to correlate with in 

vivo dopamine release (252). That is, a neurobiological correlate of the animal model 

correctly predicted the nature of the dopaminergic dysregulation later found in patients 

with schizophrenia.  

 

Recent research on amphetamine-induced animal models has revealed abnormalities at 

the neuronal level in prefrontal cortex (253). Homayoun and Moghaddam (253) 

investigated PFC neuronal activation in rats after amphetamine sensitisation (five days 

repeated daily dosing). Emphasising the importance of specifying pharmacological 

models in terms of exposure to single (acute) or repeated (subchronic or chronic) dosing, 

this group reported that the electrophysiological responses of PFC neurons begin to 

change after a few doses of amphetamine. Repeated amphetamine exposure had opposite 

effects in two regions of prefrontal cortex – a progressive hyperactivation of orbitofrontal 

cortex and hypoactivation of medial prefrontal cortex. These alterations were present 

irrespective of whether the rats were behaving spontaneously or performing an operant 

responding task, indicating they were not secondary to hyperlocomotion. The pattern of 

prefrontal findings is homologous to prefrontal findings reported in human in vivo 
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neuroimaging studies of schizophrenia (hypoactivation of dorsolateral PFC, 254) and 

substance addiction (hyperactivation of orbitofrontal cortex, 255), another example of the 

animal model informing human disease research. As only subchronic or chronic 

amphetamine dosing (256-261), and not single dosing, induces psychosis in healthy or 

substance-abusing volunteers, prefrontal neuronal dysfunction demonstrated in the 

repeat-dosing amphetamine model (253) may be of pathophysiological importance to 

schizophrenia, providing a marker for identifying novel and more specific 

pharmacotherapies, as well as sign-posting future research into prefrontal neuronal 

dysfunction in patients with schizophrenia. Linking the repeat-dosing amphetamine 

model back to the PCP model of schizophrenia are studies showing that psychostimulant 

sensitisation (both behavioural and neurochemical) is mediated by NMDA and non-

NMDA glutamate-dependent processes secondary to increased stimulant-induced 

dopamine release (262-264).  

 

In summary, lessons from the extensive characterisation of the amphetamine-induced 

model of schizophrenia are relevant to evaluating other animal models. For example 

PCP-related models are also sensitive to dosing schedule, with chronic (repeated daily) 

dosing inducing hypoactivation (265), not hyperactivation as seen in acute (single) dosing 

models. An issue of utmost importance is characterising an animal model at the neuronal 

and brain tissue level (8, 266). This level of information is the basis of a model’s capacity 

to generate predictions about human pathophysiology and likely clinical effectiveness of 

novel pharmacotherapies (4, 7, 266, 267). These issues are as relevant to the burgeoning 

literature on genetically modified models (1, 2, 4), as they are to the evaluation of PCP-

related animal models, the subject to which we now proceed.  

Animal models and controversy about the pharmacology of PCP and 

its analogues 

Animal studies use a range of PCP analogues, all of which are considered to have their 

primary pharmacological action at a binding site located within the ion channel formed 

by the NMDA glutamatergic receptor (called ‘the PCP binding site’). PCP inhibits 

NMDA receptor-mediated neurotransmitter release and therefore functions as an NMDA 
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receptor antagonist. As PCP binds to a site of the NMDA receptor complex that is distinct 

from the recognition site for the neurotransmitter glutamate, its inhibitory effects are non-

competitive in that they cannot be overcome by increased neurotransmitter 

concentrations. PCP analogues, ketamine and MK-801 (dizocilpine), also have high 

affinity for the PCP binding site and are NMDA antagonists. Compared to PCP, ketamine 

has lower affinity and MK-801 higher affinity for the PCP binding site. Although PCP 

and ketamine interacts with catecholamine re-uptake transporters at anaesthetic doses, 

psychotomimetic effects occur at lower serum levels where these agents have appreciable 

affinity only at the NMDA receptor complex (72).  

 

A leading research group has argued that the psychotomimetic effects of PCP and 

ketamine are primarily mediated by direct actions on dopaminergic transmission (268-

273). They propose that all psychotomimetic drugs exert this effect via D2R-related 

action (274). This group presented in vitro experimental evidence that PCP and ketamine 

are potent ligands at striatal D2R in the high-affinity state (269, 272, 273). No other 

group has replicated these findings, which have been contradicted (275) or refuted either 

in a functional assay (276) or other experiments (277, 278). Another source of evidence 

that is in complete disagreement with the hypothesis that the psychotomimetic effects of 

PCP analogues are directly caused by an amphetamine-like striatal dopaminergic 

dysregulation, are the negative results reported in the substantial in vivo ligand binding 

imaging literature (reviewed in 279). In contrast to PCP and ketamine, MK-801 is highly 

selective for the PCP site even at very high concentrations, yet it has strong 

psychotomimetic effects (72) as does the highly selective competitive NMDA antagonist, 

CGS 19755 (Selfotel, 280). Moreover, drug discrimination studies, in which animals are 

trained to recognise drugs with a common pharmacological effect, demonstrate that MK-

801 and ketamine have PCP–like effects directly proportional to their binding affinity 

potency at the PCP site and these effects are not related to the differential affinity of these 

drugs for catecholamine transporters, which are only evident at anaesthetic doses 

(reviewed in 72). It can therefore be confidently concluded that the primary 

pharmacological action responsible for the psychotomimetic effects of PCP and 

analogues is non-competitive antagonism of the NMDA receptor complex, and any 
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disturbance of dopaminergic systems is secondary to and downstream from, 

glutamatergic antagonism.  

Changes in behaviour and clinical biomarkers in PCP-related models 

As discussed above, amphetamine-induced hyperlocomotion in animal models represents 

analogous measurement of the psychotomimetic effects of amphetamine seen in humans. 

It is assumed that hyperlocomotion in animal models of psychosis is analogous to the 

positive symptoms of schizophrenia, an assumption supported by antipsychotic-induced 

attenuation of hyperlocomotion in animal models, and positive symptoms in patients. 

However, analogous measurement in models may have no relationship to disease 

pathophysiology (9). PCP (e.g., 281, 282-286), ketamine (e.g., 287), and MK-801 (e.g., 

266, 288) also induce hyperlocomotion in animals, illustrating that two different 

pharmacological models show the same analogous behaviour. However if a characteristic 

sign of the human disease, such as a distinctive catatonia-like stereotopy, selective 

impairment in working memory, or a specific deficit in sensorimotor gating, is assessed 

across species using homologous measurement, it is more likely that aspects of construct 

validity will be measured. PCP induces characteristic stereotypic head movements in 

humans (see above), which are replicated in animal models treated with PCP (e.g., 281, 

286), ketamine (e.g., 287, 289) or MK-801 (e.g., 266). That is, hyperlocomotion is 

common to both PCP and amphetamine models, whereas only PCP and analogues induce 

head movements that are identical to PCP-induced stereotopies in humans and similar to 

catatonia-like motor changes in schizophrenia. Additional face validity for PCP-induced 

animal models for schizophrenia relates to measurement of PCP-induced ‘negative’ 

symptoms. In contrast to acute amphetamine-induced models that do not show 

homologous behaviour to negative symptoms (282, 284, 288), animal models induced by 

PCP (282-285, 290) and MK-801 (288) show deficits in social interaction, considered to 

be homologous to negative symptoms. 

 

Neurocognitive testing of PCP-related animal models also supports the face (and to a 

degree, construct) validity of these models, demonstrating homologous deficits to those 

seen in PCP psychosis and schizophrenia. In particular, behavioural assessment of 
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animals treated with PCP (281, 291-294) or MK-801 (266, 295, 296) reveal deficits on 

prefrontal-related tests, such as spatial working memory tasks (266, 281, 291, 293, 294, 

296) and executive function tasks, the latter eliciting perserverative responding and 

difficulties in set shifting (292, 295). Moreover, measures of clinical biomarkers in 

animal models induced by PCP (297-299), ketamine (300, 301) and MK-801 (297, 298) 

have demonstrated deficits in PPI homologous to those found in schizophrenia. Whereas 

pre-treatment of rats with haloperidol attenuates PPI deficits induced by dopamine 

agonists (302, 303), haloperidol has no significant effect on the ability of PCP (299), 

ketamine (300), or MK-801 (299) to disrupt PPI. Taken together, these findings indicate 

that PPI deficits associated with the amphetamine-induced model are mediated by 

subcortical D2R, and PPI deficits associated with PCP-related models are not, a form of 

discriminant validity.  

Increased regional brain activation in acute PCP-related animal 

models 

Face (and to a degree, construct) validity of PCP-related animal models would be 

supported if homologous patterns of brain activation were seen across animal models, 

PCP-induced psychosis, and schizophrenia. Homology of activation change could be 

expected in terms of both regional distribution, and whether it is under- or over-activated. 

Animal models induced by MK-801 (304) or ketamine (304-306) show altered 2DG 

activation in: frontal regions, especially medial prefrontal and retrosplenial (cingulate) 

cortex; medial temporal regions, especially the hippocampal formation; anterior ventral 

thalamic nucleus; and subcortical limbic centres. Areas of altered BOLD contrast in 

ketamine-induced animal models included frontal regions and the hippocampal formation 

(307, 308). Against prediction, regional activation indexed by either BOLD contrast or 

2DG autoradiography is increased in animal models induced by MK-801 and ketamine in 

acute (single) doses (304-308). In summary, distribution of hyperactivation in PCP-

related animal models shows regional homology with activation abnormalities reported in 

studies of patients with schizophrenia, implicating four specific brain regions, namely: 

prefrontal cortex (309-312), hippocampal formation (313, 314), subcortical limbic nuclei 

(315, 316), and thalamic nuclei (137, 139, 317).  
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Paradoxical hyperactivation seen in PCP-related animal models, compared to the 

hypoactivation usually reported in studies of patients, is of special interest. Possible 

causes of animal model-human disease discrepancies include mismatch in a number of 

areas 1) use of acute pharmacological challenges to model chronic brain disease 2) use of 

neurochemical challenges to model neurodevelopmental disorder 3) modelling a different 

stage of the human disease in an animal, compared to the disease stage in which human 

findings were made (e.g. early-stage model versus late-stage disease) and 4) modelling 

different phases of the disease (e.g. acute relapse versus inter-episode residua). Two lines 

of evidence suggest that the direction-of-activation discrepancy may be due to 

administration of an acute (single) dose of PCP or analogue to model chronic disease 

findings. First, PET studies in humans show that a single dose of ketamine induced 

increased brain activation (146, 147), whilst PET studies of subjects who chronically 

abused PCP showed reduced brain activation (318, 319). Second, reduced prefrontal and 

thalamic reticulate nucleus activation was found using 2DG in a repeat-dosing animal 

model (320). Although these findings suggest that there is not a real discrepancy between 

the clinical and preclinical models, the intriguing question remains as to why NMDA 

antagonists should induce brain hyperactivation.  

Increased prefrontal glutamate in PCP-related animal models 

Using microdialysis in rats, Moghaddam and Adams (281, 321) showed that PCP induces 

presynaptic release of glutamate and dopamine, both showing increased extracellular 

levels in prefrontal cortex and nucleus accumbens. In this landmark study (see 

commentary in 321) a single dose of PCP (5 mg/kg IP) elicited marked motor activity, 

stereotopy with head rolling, and spatial working memory impairments. By manipulating 

the level of extracellular glutamate (whilst not altering dopamine levels) with a mGluR 

agonist (see next Section), these authors demonstrated that psychotomimetic behaviour of 

the model (hyperlocomotion and stereotopy) were related to glutamate levels, not 

dopamine levels. Increased prefrontal/hippocampal/subcortical glutamate efflux is a 

consistent effect replicated with a range of NMDA antagonists, including ketamine (322), 

PCP (323), and a competitive antagonist (324). Taken together, the work of Moghaddam 
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and colleagues has characterised a key element of the neuronal dysfunction underlying 

psychotomimetic behaviour in this animal model – increased levels of extracellular 

glutamate and dopamine. But is glutamate efflux related to prefrontal hyperactivation at 

the neuronal level? 

Increased prefrontal neuronal firing in PCP-related animal models 

Another cornerstone in our understanding of the cellular mechanism of the PCP-induced 

animal model concerns the firing rate of prefrontal neurons. Jackson et al. (266) 

administered single systemic doses of MK-801 (0.01, 0.05, 0.1 and 0.3 mg/kg) to rats. At 

the two highest doses of MK-801 sustained and substantial increases in prefrontal neuron 

firing occurred, firing rates highly correlated with stereotopy counts. MK-801 also 

induced spatial working memory deficits. These important in vivo findings, 

demonstrating that MK-801-induced increases in firing rate in prefrontal neurons are 

directly related to behavioural measures of the animal model, have been replicated (325-

327). Two other studies from the Fukushima Medical University, one of which 

represented the first demonstration of the effect of PCP on prefrontal neuron firing rate 

(328), add important detail to the description of the PCP-induced cellular dysfunction. 

Suzuki et al. (328) found a differential effect on prefrontal neuronal firing between 

systemic and locally (prefrontally) administered PCP, indicating that afferents 

(presumably non-NMDA glutamate) from other brain regions partly drive the prefrontal 

neuronal firing. This hypothesis was supported by a subsequent study showing that PCP 

applied locally to the ventral hippocampus led to increased prefrontal neuronal firing 

(329), apparently mediated by AMPA/kainate glutamate receptors (330). The 

thalamocortical circuit may also be a major driver of pathological prefrontal activation 

and increased cortical glutamate release. MK-801 injections into the anterior nucleus of 

the thalamus induced cortical degeneration in a pattern indistinguishable from systemic 

administration, while injection directly into cortical regions did not lead to degenerative 

change (112). As glutamatergic systems are the major energy users in the brain, and 

pyramidal cells are the major excitatory cell type, it is likely that PCP-induced regional 

hyperactivation indexed by BOLD or 2DG uptake is related to increases in pyramidal cell 

firing. The question as to how NMDA antagonism induces increased extracellular 
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glutamate and dopamine, and increased prefrontal neuronal firing, remains to be 

considered. 

GABAergic interneuron deficits in PCP-related animal models 

A long held assumption about the PCP model of psychosis is that deficits in GABAergic 

interneuron transmission, presumed to be related to PCP-induced dysfunction of the 

NMDA receptor complex on GABAergic neurons, results in disinhibition of pyramidal 

cells (3, 109, 112, 156, 331-338). There is now a wealth of evidence to support this 

assumption. Parvalbumin (PV) is a calcium binding protein located within a 

subpopulation of GABAergic interneurons. PV interneurons receive the largest 

glutamatergic input among all GABA-releasing neurons in cortex (339) and are highly 

sensitive to NMDA antagonists (340), a property related to the role played by NMDA 

receptors in control of basal synaptic activation of these interneurons (341). In an acute 

PCP dosing rat study, expression of PV was decreased in the reticular nucleus of the 

thalamus and substantia nigra pars reticulate (342). In repeat-dosing rat models, the 

density or number of hippocampal GABAergic interneurons expressing PV was 

decreased with PCP (296, 343) and with ketamine (344). In a repeat-dosing PCP monkey 

model, the density of prefrontal PV containing axo-axonic structures was decreased 

(345). Also, ketamine induced dose-dependent decreases in PV and GAD67 immuno-

reactivity in cultured PV interneurons specifically (346, 347). Because PV interneurons 

are involved in the generation of gamma oscillations responsible for temporal encoding 

and storage or recall of information required for working memory (348), alterations in 

gamma frequencies have been used to index functional deficits in GABAergic 

interneurons induced by ketamine (349). Juvenile rats given MK-801 for 14 days that 

showed increased firing of pyramidal cells and deficits in spatial memory pre-mortem, 

also showed decreased numbers of PV interneurons postmortem (296). A recent study 

provided the first direct evidence of an inverse relationship between MK-801-induced 

increases in prefrontal pyramidal cell firing rate and decreases in activity of GABAergic 

interneurons (326). This important study (326) demonstrated that NMDA receptors 

preferentially drive the activity of cortical inhibitory interneurons, and that NMDA 
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receptor antagonism causes cortical excitation by disinhibition of prefrontal pyramidal 

neurons.  

 

The significance of the cellular dysfunctions affecting GABAergic interneurons in PCP-

related animal models pertains to reports of homologous changes in prefrontal PV 

interneurons in postmortem studies of schizophrenia (309-312, 350). Moreover, 

disturbances in the gamma frequency band of scalp-recorded EEG, considered to reflect 

gamma oscillations arising from PV interneuron cortical synchronisation, are evident in 

schizophrenia and correlated with prefrontal-related cognitive deficits in patients (351-

354). That is, the PCP model of schizophrenia offers sufficient construct validity at the 

level of cellular dysfunction to inform hypotheses about the pathophysiology of 

schizophrenia that can be tested in the model. An example of such a hypothesis concerns 

the possibility that reduced nicotinamide adenine dinucleotide phosphate (NADPH) 

oxidase activation may be involved in the loss of PV expression in prefrontal cortex in 

schizophrenia (346). This hypothesis arose directly from a study of the animal model, and 

awaits investigation in studies of the human disease itself.  

Secondary monoaminergic system disturbances in PCP-related 

animal models 

Another component of the cellular dysfunction related to the PCP model concerns 

secondary effects of NMDA antagonism on catecholaminergic and serotonergic 

pathways. As noted above, there is little evidence of direct action on these 

neurotransmitter systems. However, there is a wealth of evidence that glutamatergic 

systems closely interact with dopaminergic (293, 294, 336, 355) and serotonergic (156, 

196, 197, 199, 356) pathways. In a series of ground-breaking studies Jentsch and 

colleagues showed that acute PCP dosing induces marked increases in prefrontal 

dopamine turnover (355), whilst daily chronic (14 days) dosing causes significantly 

reduced prefrontal dopamine utilisation (293) that persists up to four weeks after ceasing 

PCP administration (294). This laboratory showed that chronic PCP-induced decreased 

dopamine utilisation was associated with deficits in spatial learning memory in rats (293), 

and with deficits in perseverative learning in monkeys (294). These findings illustrate the 
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importance of specifying acute or chronic exposure to PCP and analogues in describing 

the animal model (265). Glutamatergic-serotonergic system interactions are also of 

relevance, increased prefrontal glutamate efflux being induced by 5HT2A receptor 

activation presynaptically (126, 194, 357, 358) and the psychotomimetic effects of LSD 

being reversed by mGluR2 agonist reduction of glutamate efflux (200).  

 

In summary, the PCP model of schizophrenia is now supported by an extensive literature 

describing model-induced animal behaviour and neurocognitive deficits, regional brain 

activation patterns, and a comprehensive range of cellular dysfunctions. Advanced in 

vitro and in vivo assays applied to this animal model permit a high level of homologous 

measurement. Novel hypotheses about pathogenesis and pathophysiology have been 

generated based on the model, which now go well beyond generalisations about 

hypoglutamatergic function in schizophrenia (359-363). Ultimately however, the most 

important form of validity is whether the model can predict antipsychotic efficacy in the 

development of new medications for schizophrenia.  

Drug development using PCP-related animal models 

Animal models with predictive validity, coupled with knowledge of drug action, are 

powerful combinations in the study of schizophrenia and drug development (338). For 

the purposes of this Section, mainly drugs that have been tested in patients to determine 

efficacy will be reviewed. Predictive validity will be assessed on the basis of whether 

PCP-related models can differentiate between clozapine and other available 

antipsychotics; and whether the model is predictive of novel treatments that are not based 

on D2R antagonism.  

 

There are now several studies that demonstrate differential response to clozapine 

compared to other antipsychotic agents using the PCP animal model. To illustrate, in an 

acute ketamine-induced model, clozapine completely blocked all ketamine-induced 

regional brain activation (indexed by 2DG uptake), an effect not seen with haloperidol 

(305); and in a PCP repeat–dosing model, clozapine but not haloperidol reversed PCP-

induced prelimbic reductions in PV staining (320). The reader is reminded that 
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amphetamine-induced models did not behaviourally differentiate the effect of clozapine 

and haloperidol (242). Of greater importance however, is the predictive validity of the 

model in relation to novel drug development, drugs that are not simply variations of those 

based on D2R antagonism. 

 

The first indication that the PCP-induced model might have predictive validity for agents 

with novel modes of action concerns the anticonvulsant, lamotrigine. Lamotrigine 

inhibits glutamate release via blockade of sodium channels. When tested in a ketamine-

induced mouse model, lamotrigine reversed ketamine-induced PPI deficits, an effect it 

did not have on amphetamine-induced PPI deficits (301). Moreover, lamotrigine reduced 

ketamine-induced perceptual abnormalities in HVs (364). Although lamotrigine is not 

effective as monotherapy in patients with schizophrenia, when used in treatment-resistant 

patients to augment D2R antagonist antipsychotics (365-367), lamotrigine does have 

modest beneficial effects that are evident to a greater extend when used in conjunction 

with clozapine (368-370). Carbamazapine, which does not appreciably reduce glutamate 

release despite its similar action to lamotrigine in blocking sodium channels (371), is 

ineffective as an augmenting agent in treatment-resistant schizophrenia (372).  

 

Of greater interest is the predictive validity of the PCP animal model in relation to new 

drugs that act directly on glutamate. Preliminary evidence that NMDA receptor complex 

modulators might be efficacious in schizophrenia came from studies demonstrating small 

beneficial effects of augmenting antipsychotic treatment with glycine or serine (reviewed 

in 360). Based on the PCP model, researchers have now identified and tested a range of 

new and promising compounds. Amongst these is sarcosine, a glycine transporter 1 

(Glyt-1) inhibitor, which increases glycine at the NMDA receptor complex, thereby 

facilitating NMDA transmission. Preclinical testing on PCP-induced models showed 

reversal of PCP effects (373), not as apparent in the amphetamine-induced model. 

Subsequent clinical testing revealed that sarcosine was ineffective as monotherapy (374), 

but that it shows a significant beneficial effect when used as an augmenting agent with 

conventional antipsychotic treatment (375). Sarcosine did not offer additional benefit as 

an adjunct treatment with clozapine (376), suggesting that clozapine may have direct 
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action at Glyt-1. Another example of drug development based on the PCP model is the 

preclinical testing of N-acetylaspartylglutamate (NAAG) peptidase inhibitors. These 

compounds are selective mGluR2 agonists, which inhibit presynaptic glutamate release 

(377). Preclinical testing of the NAAG peptidase inhibitor, ZJ43, showed that it reduced 

MK-801-induced hyperlocomotion and PCP-induced stereotypic movements (378), 

effects due to the mGluR3 agonist action of ZJ43 (379). Interestingly, a recent report 

demonstrated that an mGluR2 agonist abolished LSD-induced psychotomimetic 

signalling and behavioural responses (200). The field awaits the results of clinical trials 

of this class of agents.  

 

The most important example of predictive validity of the PCP model concerns the 

development of the mGluR3 agonist, LY354740, which acts to reduce release of 

presynaptic glutamate (380). Preclinical testing in an acute PCP-induced model 

demonstrated that LY354740 reduced PCP-induced stereotypic movement, 

hyperlocomotion, and spatial working memory deficits (281). Significantly these effects 

were associated with reversal of increased glutamate and dopamine effluxes prefrontally 

(281). Interestingly, preclinical testing of LY354740 in HVs did not significantly 

improve ketamine-induced psychosis ratings but it did improve ketamine-induced 

working memory deficits (381). Based on these results, LY354740 has been subjected to 

clinical trial in patients with schizophrenia. In a landmark study, acute ill patients were 

randomised to LY2140023 (an orally absorbable analogue of LY354740), olanzapine, or 

placebo. This study demonstrated that LY2140023 was effective against the positive and 

negative symptoms of schizophrenia and had few side-effects (382). Hence, the PCP 

model showed accurate predictive validity in the case of the first effective novel 

antipsychotic since the introduction of chlorpromazine.  

The PCP model of schizophrenia: An integration 
When the psychotomimetic effect of PCP was first proposed as a model of schizophrenia 

(383) the pharmacological actions of PCP were unknown. Although an early report 

hypothesised impaired function of glutamatergic neurons as a model of schizophrenia 

(384), it was not until the PCP binding site was localised to the NMDA receptor complex 
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(385) that NMDA receptor hypofunction could be incorporated into the PCP model (362, 

363). A ‘thalamic filter dysfunction’ was proposed (362): pathological activation of the 

cortico-striato-thalamo-cortical feedback loop was hypothesised to cause information 

overload in the cortex (reviewed in 386). Strengthening evidence that the 

psychotomimetic effects of PCP were directly related to NMDA receptor complex 

antagonism challenged the highly influential dopamine hypothesis of schizophrenia (72). 

An important element of the PCP model, glutamatergic neuronal disinhibition due to 

functional antagonism of NMDA receptors on GABAergic interneurons that normally 

place excitatory pyramidal neurons under inhibitory control, was added more recently 

(387, 388). The putative role of cortical pruning (389) and evidence of reduced prefrontal 

neuropil (390, 391) in schizophrenia have also been incorporated into the model (361).  

 

A number of neuropharmacological descriptions of the PCP model (hypoglutamatergic 

model) of schizophrenia have been published (109, 112, 332-334, 336-338, 359, 360, 

392-396). Central to these models is a PCP-induced deficit of GABAergic interneurons, 

which results in disinhibition of glutamatergic pyramidal cells (see Figure 1, Panel A). 

Although this disinhibition is assumed to be widespread throughout grey matter, models 

emphasise its impact on prefrontal cortex in accounting for psychotomimetic effects. 

Increased levels of extracellular glutamate in acute PCP models are thought to result from 

local collateral feedback by disinhibited pyramidal neurons onto presynaptic terminals, 

and increased non-NMDA glutamatergic efferent feedback from thalamus, other 

subcortical centres, and the hippocampal formation (see Figure 1, Panel B). Completing 

the PCP model are descriptions of increased dopamine efflux in the prefrontal cortex and 

ventral pallidum, resulting from greater cortical drive to striatal/limbic subcortical 

centres. Increased cortical drive to the median raphe results in increased prefrontal 

serotonin concentrations, which augment glutamate efflux via presynaptic 5HT2A 

receptor activation. Importantly, ventral pallidal stimulation of the dorsomedial thalamic 

nucleus, and hippocampal-limbic stimulation of the anterior nucleus of the thalamus, 

provides an explanation for excessive subcortical-cortical glutamatergic feedback drive to 

the prefrontal cortex (see Figure 1, Panel B).  
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PLACE FIGURE 1 NEAR HERE 

 

The acute model described above has been supplemented by a chronic PCP model, which 

includes reduced prefrontal extracellular glutamate and dopamine (294). A number of 

cellular mechanisms have been advanced to link these surface receptor-focussed models 

to intracellular final common pathway models. Svenningson et al. (277, 278) have 

implicated a common signalling pathway in the mediation of the psychotomimetic effects 

of glutamatergic antagonists (such as PCP), serotonergic agonists (such as LSD) and 

dopaminergic agonists (such as amphetamine). In this pathway, phosphorylation status of 

Dopamine- and an Adenosine 3’,5’monophosphate (cAMP)-Regulated PhosphoProtein of 

32 kilodaltons (DARPP-32) regulates downstream effector proteins, glycogen synthesis 

kinase-3 (GSK-3), cAMP response element-binding proteins (CREP) and c-Fos, thereby 

influencing electrophysiological, transcriptional, and behavioural responses. An 

alternative mechanism for linking the PCP model to intracellular signalling pathways is 

via glutamate-mediated excitotoxicity, which has been found to induce apoptotic loss of 

dendrites and synapses without cell body death or gliosis (reviewed in 336). Postmortem 

studies have reported elevated Bax:Bcl-2 ratio (a marker of increased propensity for 

apoptosis) in the temporal cortex (397, 398), comparable to functional findings in 

cultured fibroblasts from patients with schizophrenia (399). Taken together, these 

proposals provide a rich source of hypotheses for testing in studies into the pathogenesis 

of schizophrenia. 

Summary and conclusion 
It is concluded that although PCP, LSD and MDMA have well-documented 

psychotomimetic effects, only for PCP is there abundant evidence that it induced 

psychotic disorder beyond the acute symptoms of intoxication. In fact, there is no clear 

evidence that either LSD or MDMA induces psychotic disorder independent of 

toxication, let alone schizophrenia, in individuals who do not have vulnerability to 

schizophrenia premorbidly. Impressive qualitative similarity between PCP-induced 

symptoms and those of schizophrenia, both in range and nature, was shown by detailed 

examination of first-hand clinical descriptions of phenomenology. This examination was 
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only possible by review of primary source publications written by trained clinicians who 

personally observed patients and HVs experiencing PCP-related symptoms.  

 

Although inducing quantitatively less intense psychotomimetic effects, ketamine is 

considered a safe and valid model of PCP psychosis, and applicable to preclinical human 

studies. We also concluded that rodent and primate models induced by PCP and 

analogues have construct validity, showing homologous behaviour, cognitive deficits, 

alterations in regional brain activation, and underlying neuronal dysfunction, to those 

observed in patients with schizophrenia. Most importantly, animal models demonstrated 

predictive validity at the level of hypothesis-generation about human pathophysiology 

and efficacy of novel drug therapies. Indeed, it could be said that PCP-related animal 

models have been instrumental in the discovery of the first novel class of antipsychotic 

drug treatments (i.e. mGluR2/3 agonists) without D2R antagonist action since the 

introduction of chlorpromazine. The relative merits of PCP-related and amphetamine-

induced models of schizophrenia have been discussed elsewhere (3). We considered both 

models to have high predictive validity when descriptions and measurement are carried 

out at the level of neuronal dysfunction. Amphetamine-induced models highlight the 

importance of dosing schedules to describing models because only sensitisation induced 

by repeated dosing mimics schizophrenia (e.g. 253, 400-402). This issue is also relevant 

to PCP-related models (294). A notable limitation of neurochemical models is that they 

usually do not incorporate a neurodevelopmental perspective (403). This implies that 

developmental models will be required to complement pharmacological models 

(reviewed in 4), either aetiologically linked to the occurrence of schizophrenia (e.g., 

prenatal viral infection mimicked using poly I:C, 404), induced by a prenatal 

hippocampal lesion (403, 405), or based on a specific genetic alteration, exemplified by 

mouse models of velo-cardio-facial syndrome (406), DISC1 (407) or neuregulin-1 Type 

III (408).  

 

In a more general sense this review reminds us of our field’s historic dependence on 

research using patients. Preclinical models, especially in animals, release research from 

the inevitable confounding factors related to illness experience and treatment. Most 
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importantly animal models allow direct observation of neuronal dysfunction that models 

the human pathophysiology. Without this opportunity, major improvements in the drug 

treatment of schizophrenia will not be possible. This review also highlights the need for 

excellence in clinical observation and measurement in developing adequately valid 

animal models, which rely on the clinical insights of well-trained clinicians who are 

interested in the neurobiology of psychiatric disorder. Communication between the clinic 

and the preclinical behavioural laboratory will enable the refinement of established 

models and the creation of new ones (1). Insufficient well validated, objective, and 

reliable measures of psychopathology is a barrier to the development of homologous 

measurement in animal models. The validation of an animal model can only be as good 

as the information available in the relevant preclinical human research and the clinical 

literature (409). Clinical studies need to be informed by results from animal studies as 

much as the reverse is true. More translational science is needed to relate animal findings 

to humans and vice versa (1). 
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Figure 1.  
Panel A: Site of action of PCP. G: GABAergic interneuron; P: pyramidal neuron. 
Panel B: Circuits of the brain relevant to the PCP model of schizozphrenia. 
Black unbroken lines indicate glutamatergic neurotransmission, the strength of which is 
indicated by the number of + signs.  
Black dotted lines indicate dopaminergic neurotransmission.  
Grey unbroken lines indicate serotonergic neurotransmission.  
PFC: prefrontal cortex; AMG: amygdala; V. STRIATUM: ventral striatum; VP:  ventral 
pallidum; THAL: thalamus; DMn: dorsomedial nucleus of thalamus; An: anterior nucleus 
of thalamus; HC: hippocampus; MR: median raphe. 
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